Sound Trap
   HOME

TheInfoList



OR:

A sound attenuator, or duct silencer, sound trap, or
muffler A muffler (North American and Australian English) or silencer (British English) is a device for reducing the noise emitted by the exhaust of an internal combustion engine—especially a noise-deadening device forming part of the exhaust sys ...
, is a
noise control Noise control or noise mitigation is a set of strategies to reduce noise pollution or to reduce the impact of that noise, whether outdoors or indoors. Overview The main areas of noise mitigation or abatement are: transportation noise control, ...
acoustical Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
treatment of Heating Ventilating and Air-Conditioning (HVAC) ductwork designed to reduce transmission of
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arise ...
through the ductwork, either from equipment into occupied spaces in a building, or between occupied spaces. In its simplest form, a sound attenuator consists of a baffle within the ductwork. These baffles often contain sound-absorbing materials. The physical dimensions and baffle configuration of sound attenuators are selected to attenuate a specific range of
frequencies Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
. Unlike conventional internally-lined ductwork, which is only effective at attenuating mid- and high-frequency noise, sound attenuators can achieve broader band attenuation in relatively short lengths. Certain types of sound attenuators are essentially a
Helmholtz resonator Helmholtz resonance or wind throb is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the ''Helmholtz resonator'', wh ...
used as a passive noise-control device.


Configuration

Generally, sound attenuators consist of the following elements: * An inner perforated layer of light gauge sheet metal (baffle) * The baffle is then filled with sound-absorptive insulation ** In high velocity systems, or when there is a concern for
particulate matter Particulates – also known as atmospheric aerosol particles, atmospheric particulate matter, particulate matter (PM) or suspended particulate matter (SPM) – are microscopic particles of solid or liquid matter suspended in the air. The ter ...
in the air stream, a bagged or
mylar BoPET (biaxially-oriented polyethylene terephthalate) is a polyester film made from stretched polyethylene terephthalate (PET) and is used for its high tensile strength, chemical and dimensional stability, transparency, reflectivity, gas and aro ...
-faced insulation is used. ** Packless sound attenuators do not include sound-absorptive insulation. As a result, the high-frequency insertion loss of a packless sound trap is greatly reduced. Bagged insulation or packless sound attenuators are typically referred to as "hospital grade" attenuators. * An outer non-perforated layer of sheet metal. The outer layer is typically heavy gauge sheet metal (18ga or stiffer) to minimize duct break-out and break-in noise. **The gauge of circular sound attenuators is typically less of a consideration, as circular ductwork is considerably stiffer than rectangular ductwork and less prone to duct breakout noise. Sound attenuators are available in circular and rectangular form factors. Prefabricated rectangular sound attenuators typically come in 3, 5, 7, or 9-ft lengths. The width and height of the sound attenuators are often determined by the surrounding ductwork, though extended media options are available for improved attenuation. The baffles of rectangular sound attenuators are commonly referred to as splitters, whereas circular sound attenuators contain a bullet-shaped baffle. Sound attenuators are typically classified as "Low," "Medium," or "High" based on performance characteristics and/or duct velocity. An example classification scheme is listed below.


Properties

The acoustical properties of commercially available sound attenuators are tested in accordance with ASTM E477: Standard Test Method for Laboratory Measurements of Acoustical and Airflow Performance of Duct Liner Materials and Prefabricated Silencers. These tests are conducted at
NVLAP {{unreferenced, date=October 2012 National Voluntary Laboratory Accreditation Program (NVLAP) is a National Institute of Standards and Technology (NIST) program in the USA which provides an unbiased third-party test and evaluation program to accredi ...
-accredited facilities and then reported by the manufacturer in marketing or engineering bulletins. Outside of the US, sound attenuators are tested in accordance with British Standard 4718 (legacy) or ISO 7235.


Dynamic insertion loss

The dynamic
insertion loss In telecommunications, insertion loss is the loss of signal power resulting from the insertion of a device in a transmission line or optical fiber and is usually expressed in decibels (dB). If the power transmitted to the load before insertion ...
of a sound attenuator is the amount of attenuation, in
decibel The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a po ...
s, provided by the silencer under flow conditions. While flow conditions in typical low velocity duct systems rarely exceed 2000–3000 ft/min, sound attenuators for steam vents must withstand airflow velocities in the 15,000-20,000 ft/min. range. The acoustic performance of a sound attenuator is tested over a range of airflow velocities, and for forward and reverse flow conditions. Forward flow is when the air and sound waves propagate in the same direction. The insertion loss of a silencer is defined as IL\ (dB)=10\log( \frac) where: W_0= Radiated
sound power Sound power or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. It is defined as "through a surface, the product of the sound pressure, and the component of the particle velocity, at ...
from the duct with the attenuator W_m= Radiated sound power from the duct without the attenuator Some manufacturers report the static insertion loss of the silencer, which is typically measured with a loudspeaker in lieu of a fan to represent a zero flow condition. These values can be useful in the design of smoke evacuation systems, where sound attenuators are used to attenuate exterior noise that breaks into the exhaust ductwork. The insertion loss of a sound attenuator is sometimes referred to as
transmission loss Transmission loss (TL) in general describes the accumulated decrease in intensity of a waveform energy as a wave propagates outwards from a source, or as it propagates through a certain area or through a certain type of structure. It is a termino ...
.


Regenerated noise

The internal baffles of a sound attenuator constrict airflow, which in turn generates turbulent noise. Noise generated by a sound attenuator is directly related to the airflow velocity at the constriction, and changes proportionally with the face area of the sound attenuator. The change in generated noise can be expressed as Generated\ Noise\ (dB)=10\log( \frac) where: A_1= The new face area of the sound attenuator A_0= Reference face area of the sound attenuator For example, if the attenuator doubles in width, while maintaining a constant airflow velocity, the generated noise will increase by 3 dB. Conversely, if the attenuator shrinks by a factor of 10, while keeping the airflow velocity constant, the generated noise will decrease by 10 dB. Since turbulence generated noise caused by duct fittings changes at a rate of 50log, airflow velocities are a critical component of attenuator sizing. Regenerated noise should always be reviewed, but it is usually only a concern in very quiet rooms (e.g.
concert halls A concert hall is a cultural building with a stage that serves as a performance venue and an auditorium filled with seats. This list does not include other venues such as sports stadia, dramatic theatres or convention centres that may ...
,
recording studio A recording studio is a specialized facility for sound recording, mixing, and audio production of instrumental or vocal musical performances, spoken words, and other sounds. They range in size from a small in-home project studio large enoug ...
s, music rehearsal rooms) or when the ductwork velocity is greater than 1500 ft/m. There is a prediction formula that can be used to estimate duct silencer regenerated noise if no data exists Lw=55log(V/V_0)+10log(N)+10log(H/H_0)-45 where: Lw = sound power level generated by the sound attenuator (dB) V = velocity at the constricted cross-area (ft/min) V_0 = reference velocity (196.8 ft/min) N = number of air passages (number of splitters) H = height or circumference of the sound attenuator (in) H_0 = reference dimension (0.0394 in)


Pressure drop

Similar to other duct fittings, sound attenuators cause
pressure drop Pressure drop is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through the tube. The main det ...
. Catalog pressure drop values obtained through ASTM E477 assume ideal, laminar airflow, which is not allow always found in field installations. The
ASHRAE Handbook The ASHRAE Handbook is the four-volume flagship publication of the nonprofit technical organization ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). This Handbook is considered the most comprehensive and author ...
provides pressure drop correction factors for different inlet and outlet conditions. These correction factors are used whenever there's a turbulent wake within 3 to 5 duct diameters upstream or downstream of the attenuator. Where sound attenuator dimensions differ from surrounding duct dimensions, transitions to and from the sound attenuator should be smooth and gradual. Abrupt transitions cause the pressure drop and regenerated noise to significantly increase. The pressure drop through a sound attenuator is typically higher than the pressure drop for an equivalent length of lined duct. However, significantly longer lengths of lined duct are required to achieve equal attenuation, at which point the pressure drop of large extents of lined duct is significantly greater than incurred through a single sound attenuator. Friction losses due to dissipative sound attenuators can be expressed as Friction\ Loss=\fracl(K_f\frac\rho v_p^2), \ N/m^2 where: \frac = ratio of the sound attenuator perimeter and area l = length of the duct K_f = The friction loss coefficient \rho = density of air v_p^2 = passage velocity The perimeter, area, and length of the sound attenuator are also parameters which affect its pressure drop. Friction loss at the sound attenuator is directly proportional to its noise attenuation performance, whereby greater attenuation usually equates to greater pressure drop.


Design variations

Prefabricated sound attenuators rose to prominence in the late 1950s-early 1960s. Several manufacturers were among the first to produce and test prefabricated sound attenuators:
Koppers Koppers is a global chemical and materials company based in Pittsburgh, Pennsylvania, United States in an art-deco 1920s skyscraper, the Koppers Tower. Structure Koppers is an integrated global producer of carbon compounds, chemicals, and trea ...
, Industrial Acoustics Company, Industrial Sound Control, and Elof Hansson. Though rectangular dissipative attenuators are the most common variant of attenuators used today in
architectural acoustics Architectural acoustics (also known as building acoustics) is the science and engineering of achieving a good sound within a building and is a branch of acoustical engineering. The first application of modern scientific methods to architectura ...
noise control, other design options exist.


Reactive silencers

Reactive silencers are very common in
muffler A muffler (North American and Australian English) or silencer (British English) is a device for reducing the noise emitted by the exhaust of an internal combustion engine—especially a noise-deadening device forming part of the exhaust sys ...
design of automobiles and trucks. Attenuation is primarily achieved through sound reflection, area change, and tuned chambers. The design of reactive silencers from scratch is mathematically intensive, so manufacturers often have a number of prefabricated designs.


Dissipative silencers

Dissipative silencers attenuate sound by transferring sound energy to heat. Dissipative silencers are used when broadband attenuation with low pressure drop is desired. In typical ductwork, high frequencies propagate down the duct as a beam, and minimally interact with the outer, lined edges. Sound attenuators with baffles that break the line of sight or elbow attenuators with a bend provide better high frequency attenuation than conventional lined ductwork. Generally, longer attenuators with thicker baffles will have a greater insertion loss over a wider frequency range. These types of attenuators are commonly used on air handling units, ducted
fan coil unit A fan coil unit (FCU), also known as a Vertical Fan Coil-Unit (VFC), is a device consisting of a heat exchanger (coil) and a fan. As part of an HVAC system found in residential, commercial, and industrial buildings using ducted split air condi ...
s, and at the air intake of
compressor A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor. Compressors are similar to pumps: both increase the pressure on a fluid and both can transp ...
s,
gas turbine A gas turbine, also called a combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the directi ...
s, and other ventilated equipment enclosures. On certain air handling unit or fan applications, it is common to use a co-planar silencer—a dissipative silencer that is sized for the fan and mounted directly to the fan outlet. This is a common feature in fan array design.


Crosstalk silencers

Purpose-built sound attenuators to prevent
crosstalk In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, induc ...
between two closed, private spaces. Their design typically incorporates one or more bends to form a "Z" or "U" shape. This bend increases the efficacy of the sound attenuator without significantly increasing its overall length. Crosstalk attenuators are passive devices and should be sized for extremely low pressure drops — typically less than 0.05 inches w.g.


Exhaust registers

In the early 1970s, American SF Products, Inc. created the KGE Exhaust Register, which was an air distribution device with an integral sound attenuator.


Noise control implementation

First, the project noise control engineer (or acoustician), mechanical engineer, and equipment representative select the quietest possible equipment which meets the mechanical requirements and budget constraints of the project. Then, the noise control engineers will typically calculate out the path, without the attenuator first. The required sound attenuator insertion loss is the difference between the calculated path and the target
background noise Background noise or ambient noise is any sound other than the sound being monitored (primary sound). Background noise is a form of noise pollution or interference. Background noise is an important concept in setting noise levels. Background no ...
level. If no attenuator selection is feasible, the noise control engineer and mechanical must re-evaluate the path between the equipment and the sound attenuator. When space constraints do not allow for a straight attenuator, an elbow or transitional attenuator can be used. Duct silencers are prominently featured in systems where fiberglass internal duct liner is prohibited. While fiberglass's contribution to air quality is insignificant, many higher education projects have adopted a limit on internal fiberglass liner. In these situations, the project acoustician must rely on duct silencers as the primary means of fan noise and duct-borne noise attenuation. Sound attenuators are typically located near ducted mechanical equipment, to attenuate noise which propagates down the duct. This creates a trade-off: the sound attenuator should be located near the fan and yet the air is typically more turbulent closer to fans and dampers. Ideally, sound attenuators should straddle the wall of the mechanical equipment room provided there are no fire dampers. If a sound attenuator is located over occupied space, the noise control engineer should confirm that duct breakout noise is not an issue prior to the attenuator. If there is significant distance between the attenuator and the mechanical room penetration, additional duct cladding (such as external fiberglass blanket or gypsum lagging) may be required to prevent noise from breaking into the duct and bypassing the attenuator. Sound attenuators can also be used outdoors to quiet
cooling tower A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream to a lower temperature. Cooling towers may either use the evaporation of water to remove process heat and ...
s, air intake of emergency generators, and exhaust fans. Larger equipment will require an array of sound attenuators, otherwise known as an attenuator bank.


See also

*
Ductwork Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, ''supply air'', ''return air'', and ''exhaust air''. Ducts commonly also deliver '' v ...
*
HVAC Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HV ...


References


External links


Acoustical Society of America

American Society of Heating, Refrigerating and Air-Conditioning Engineers

ASTM International

Price Industries



Vibro-Acoustics

{{DEFAULTSORT:Sound Trap Heating, ventilation, and air conditioning Noise control